62 research outputs found

    Minimum-lap-time optimisation and simulation

    Get PDF
    The paper begins with a survey of advances in state-of-the-art minimum-time simulation for road vehicles. The techniques covered include both quasi-steady-state and transient vehicle models, which are combined with trajectories that are either pre-assigned or free to be optimised. The fundamentals of nonlinear optimal control are summarised. These fundamentals are the basis of most of the vehicular optimal control methodologies and solution procedures reported in the literature. The key features of three-dimensional road modelling, vehicle positioning and vehicle modelling are also summarised with a focus on recent developments. Both cars and motorcycles are considered

    Relaminarisation of Re_Ď„=100 channel flow with globally stabilising linear feedback control

    Get PDF
    The problems of nonlinearity and high dimension have so far prevented a complete solution of the control of turbulent flow. Addressing the problem of nonlinearity, we propose a flow control strategy which ensures that the energy of any perturbation to the target profile decays monotonically. The controller’s estimate of the flow state is similarly guaranteed to converge to the true value. We present a one-time off-line synthesis procedure, which generalises to accommodate more restrictive actuation and sensing arrangements, with conditions for existence for the controller given in this case. The control is tested in turbulent channel flow (Re_τ = 100) using full-domain sensing and actuation on the wall-normal velocity. Concentrated at the point of maximum inflection in the mean profile, the control directly counters the supply of turbulence energy arising from the interaction of the wall-normal perturbations with the flow shear. It is found that the control is only required for the larger-scale motions, specifically those above the scale of the mean streak spacing. Minimal control effort is required once laminar flow is achieved. The response of the near-wall flow is examined in detail, with particular emphasis on the pressure and wall-normal velocity fields, in the context of Landahl’s theory of sheared turbulence

    Relaminarisation of Re_{\tau} = 100 channel flow with globally stabilising linear feedback control

    Full text link
    The problems of nonlinearity and high dimension have so far prevented a complete solution of the control of turbulent flow. Addressing the problem of nonlinearity, we propose a flow control strategy which ensures that the energy of any perturbation to the target profile decays monotonically. The controller's estimate of the flow state is similarly guaranteed to converge to the true value. We present a one-time off-line synthesis procedure, which generalises to accommodate more restrictive actuation and sensing arrangements, with conditions for existence for the controller given in this case. The control is tested in turbulent channel flow (Reτ=100Re_\tau=100) using full-domain sensing and actuation on the wall-normal velocity. Concentrated at the point of maximum inflection in the mean profile, the control directly counters the supply of turbulence energy arising from the interaction of the wall-normal perturbations with the flow shear. It is found that the control is only required for the larger-scale motions, specifically those above the scale of the mean streak spacing. Minimal control effort is required once laminar flow is achieved. The response of the near-wall flow is examined in detail, with particular emphasis on the pressure and wall-normal velocity fields, in the context of Landahl's theory of sheared turbulence

    Suppression of Burst Oscillations in Racing Motorcycles

    Get PDF
    Burst oscillations occurring at high speed and under firm acceleration are suppressed with a mechanical steering compensator. Burst instabilities in the subject racing motorcycle are the result of interactions between the wobble and weave modes under high-speed cornering and firm-acceleration conditions. Under accelerating conditions the wobble-mode frequency decreases, while the weave mode frequency increases so that destabilizing interactions occur. The design analysis is based on a time-separation principle, which assumes that bursting occurs on time scales over which speed variations can be neglected. Therefore, under braking and acceleration conditions linear time-invariant models corresponding to constant-speed operation can be utilized in the design process. The inertial influences of braking and acceleration are modelled using d’Alembert-type forces that are applied at the mass centres of each of the model’s constituent bodies. The resulting steering compensator is a simple mechanical network that comprises a conventional steering damper in series with a linear spring. This network is a mechanical lag compensator

    Dynamics and Optimal Control of Road Vehicles

    No full text
    The broad aim of this text is to provide a comprehensive coverage of the modelling and optimal control of both two- and four-wheeled road vehicles. The first focus of the work is a review of classical mechanics and its use in building vehicle and tyre dynamic models. The second is nonlinear optimal control, which is used to solve a range of minimum-time, minimum-fuel, and track curvature reconstruction problems

    Automotive combustion modelling and control

    No full text
    This thesis seeks to bring together advances in control theory, modelling and controller hardware and apply them to automotive powertrains. Automotive powertrain control is dominated by PID controllers, look-up tables and their derivatives. These controllers have been constantly refined over the last two decades and now perform acceptably well. However, they are now becoming excessively complicated and time consuming to calibrate. At the same time the industry faces ever increasing pressure to improve fuel consumption, reduce emissions and provide driver responsiveness. The challenge is to apply more sophisticated control approaches which address these issues and at the same time are intuitive and straightforward to tune for good performance by calibration engineers. This research is based on a combustion model which, whilst simplified, facilitates an accurate estimate of the harmful NOx and soot emissions. The combustion model combines a representation of the fuel spray and mixing with charge air to give a time varying distribution of in-cylinder air and fuel mixture which is used to calculate flame temperatures and the subsequent emissions. A combustion controller was developed, initially in simulation, using the combustion model to minimise emissions during transient manoeuvres. The control approach was implemented on an FPGA exploiting parallel computations that allow the algorithm to run in real-time. The FPGA was integrated into a test vehicle and tested over a number of standard test cycles demonstrating that the combustion controller can be used to reduce NOx emissions by over 10% during the US06 test cycle. A further use of the combustion model was in the optimisation of fuel injection parameters to minimise fuel consumption, whilst delivering the required torque and respecting constraints on cylinder pressure (to preserve engine integrity) and rate of increase in cylinder pressure (to reduce noise).This thesis is not currently available in OR
    • …
    corecore